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1. Introduction

The ability of g sesony system (o passively sense the three-dimensional structure of ity
surrounding emvironment i frequently a necessary precursor o cfficient interactions with that
emviropment. both for hiological and artificial systems. A common method for performing this
sensing is through stereo vision. and i fact. the human stereo system is remarkably adept at this
computation, under a wide varicty of conditions. Sterco vision can he characterized by three steps:
(1) The point in one image corresponding to the projection of a pomt on a surface s located. (2)
Phe point in the other image corresponding 1o the projection of the same surface point is located.
(3) The difference in projection of the corresponding points is used. together with estimates of the
parameters of the imaging geametry (which may be determined solely frmo the correspondences).
to determine a measure of the distance to the surfuce point. While all three steps are important
to the process. the second stage has usually been considered the critical one. To deal with this
correspondence problem. and its concomitant problem of avoiding false rargeis in determining
the correct correspondence or match. concern has centered on appropriate representations for
matching. and on constraints on the matching process that will ensure the correct correspondence

is chosen.

While psychophysical evidence concerning the nature of the human stereo system  has
been accumulating for some time, recently attention also has been focused on computational
investigations of the system. Onc goal of these investigations has been to consider models of the
information processing aspects of the system, independent to a large extent of the specifics of the
mechanism that performs the computation. While such models are of importance in understanding
the processing of the human system, this relative independence of the algorithm used by the
human system and its specific implementation in neural units also suggests that such algorithms
may have implications for non-biological applications.

In 1977, Marr and Poggio proposcd a feature-point bascd model of aspects of human
stercopsis [Marr and Poggio, 1979]. A computer implementation of their algorithm was then
developed and tested [Grimson, 1981a, b). Initially, the implementation was evaluated on standard
psychological test images, in particular, random dot stercograms [Julesz. 1960, 1971]. The intent of
this investigation was to demonstrate the adequacy of the Marr-Poggio modcl for such patterns,
and to demonstrate the consistency of the model with known aspects of human sterco perception,
including situations in which the system fails. The implementation was also tested on a number of
natural images, under a varicty of illumination conditions and with a varicty of different surface
materials. Since the original presentation of the Marr-Poggio model, a number of additional
psychophysical predictions of the modcl have been tested, and consequently, several modifications
and improvements have been proposed [c.g. Mayhew and Frisby, 1981; Frisby and Mayhew, 1980;
Mowforth, Mayhew and Frisby, 1981; Schumer and Julesz, 1982].

While examining the psychophysical aspects of the model is clearly of importance for
perceptual modclling. computational experiments with the algorithm can also provide insights
into the information processing aspects of the model. Such experiments arc also of importance
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when considering applications of the algonthin to donuans other than moedelhing of the hunan
system. as are non-biologically based studies of feature point stereo vision systems fe.g. Arnold and
Binford, 1980: Baker. 1982: Baker and Binford, 1981 Barnard and hompson, 19800 Moravec,
1977, 1980: Ohta and Kanade. 1983 (sec albso the techmque of Kass 1983, 1984, which muay also
be applicable to feature point stereo)]. Following the original testing of the Marr-Poggio-Grimson
algorithm. as reported previously [Grimson, 19814, b, with some modifications proposed in Marr
and Poggio. 1980]. extensive additional computational experiments with the algorithim have been
performed. especially on natural images. These expenments have led to o number of madifications
1o the original algorithm, as well as clucidating points that require additonal atiention. While no
inference s made as o the relevance of such modifications for the human system. the maodified

algorithm may serve as a useful step towards an automated artificial sterco system.

In this paper, we will bricfly review the original Marr-Poggio model and outline the previousty
reported implementation and testing of that algorithm. We will then describe some of the open
questions concerning that implementation, as well as some of the modifications suggested by other
models [c.g. Mavhew and Frisby, 1981]. A revised algorithm will then be presented. Finally, we
will illustrate the performance of the modified algorithm by applyving it to a scries of natural
images. Many of the cxamples presented are aerial sterco photographs, in part because automated
cartography is one of the traditional arcas of application of computer sterco algorithms. We also
consider an example of a robotics application, and investigate the accuracy of the algorithm in
reconstructing the distance to objects in the scene, given measurements for the parameters of the
imaging gcometry.

2. The Marr-Poggio Stereo Model

In this section, we present a brief review of the original Marr-Poggio model [Marr and
Poggio. 1979]. its original implementation [Grimson. 1981a, b] and suggested modifications- based
on psychophysical and computational studics [c.g. Mayhew and Frisby, 1981). Readers interested
in more comprehensive treatments are directed to the original articles.

2.1. The Model

The algorithm proposed by Marr and Poggio for solving the stereo correspondence problem
can be described as a feature-point based matching system, using a coarse to fine control strategy
to limit the search space of possible matches. As originally proposed [Marr and Poggio, 1979], the
algorithm consisted of the following steps.

(1) The Teft and right images are each filtered with oriented second differential operators
of four sizes that increasc in sizc with eccentricity (distance from the center of the eye).
The cross-section of these operators is approximately the difference of two Gaussian
functions with spacc constants in the ratio 1:1.75. The purpose of this filtering is to
allow the detection of significant intensity changes at multiple scales.

(2) Zcro-crossings in the fillered images arc Jocated by scanning along lincs lying
perpendicular to the orientation of the original differential operator., These zero-crossings
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mark the locations of significant changes - the onginal mtensity function. at difterent

scafes. Positicas of the ends of lines and edges are also located.

(3) For cach operator size and ortentation, matching tikes pluce between sero-crassing
segments or ermunatons of the same contrast sign in the two images, for g range of
disparities up to about the width of the operator's central region. Withimn this disparity
range. Marr and Poggio showed that false targets pose only a simpie problem, because

of the roughly bandpass nawre of the filiers,

(4) Disparity information obtained by matching features derived from the larger operators
can control vergence ¢ye movements, thus allowing feature from the smaller operators
to come into correspondence. In this way. the matching process gradually moves from
dealing with large disparities at a low resolution to dealing with small disparnitics at a

high resolution [see also. for example. Moravec, 1980].

(5) When a correspondence is achicved, it is stored in a dynamic buffer, called the
2}-dimensional sketch {Marr, 1978}

2.2. The Original Implementation

The first computer implementation of this model was reported in [Grimson, 1981a) (recently
an independent reimplementation of the algorithm has been reported in [Kak, 1983]). The original
implementation essentially followed the five steps outlined above, although there were a number of
differences. Most of these changes arose from observations made during the process of transferring
the model described above to a working algorithm, since the process of explicitly detailing the
algorithm illuminated some previously unforeseen difficulties, whose solutions led to modifications
to the original model.

The steps in the implementation can be briefly outlined as follows.

(1) Image Filtering: The left and right images of a sterco pair are convolved with a series of

two-dimensional operators, whose shape is given by the Laplacian of a Gaussian :
2 2 2 2
V"’C(z,y) = [2 :211 - 2] cxp{—_(z2a‘;__l_)}’

or by an approximation to this operator, using ¢ difference of two Gaussian functions [Marr and
Hildreth, 1980]. These operators are isotropic with respect to orientation, and hence differ from
the directional opcrators proposed in the modcel. (A discussion of this point may be found in
[Grimson, 1981a, b).) The sizc of the operator. as well as its spatial frequency characteristics, is
detcrmined by the value of the constant o, which is related to the width of the central negative

portion of the operator, w, by the following expression:
w

0= —.

2v2

Figure 1 illustrates the form of these operators.

If cach picture clement (pixel) is considered equivalent to one photoreceptor in the fovea of
the human visual system, then we may usc psychophysical data obtained from measurements on
the human system [e.g. Wilson and Bergen. 1979] to determine the appropriate sizes of operators.

w w—‘" i o - " . - “‘”m,x_-,-——--o
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Figure 1. The inital filters. Each image is convolved with a two-dimensional operator whase form is
described by a Laplacian of a Gaussian. The size of the operator is determined by the space constant of
the Gaussian distribution. Part a shows a perspecve plot of a2 VG filter, part b shows a one-dimensional
slice through the center of the filter.

This led us to implement V2G opcerators with widths of w = 9, 18,36 and 72 picture clements
(pixcls) each. It has also been argued on computational grounds [Marr, Poggio and Hildreth, 1979]
and on vernier acuity grounds {Crick. et al. 1980) that an additional smaller operator corresponding
roughly to a width of w = 4 may also be present in the human system. The coefficients of the
operators were represented to a precision of 1 part in 2048. Cocfficients of magnitude less than
zo5% th of the maximum value of the operator were set to zero. Thus. the truncation radius of the
operator (the point at which all further operator values were treated as zero) was approximately
1.8w.

(2) Symbolic Features: In the original Marr-Poggio theory, the clements to be matched
betwec » images were (i) zero-crossings whosc orientations are not horizontal, and (ii) terminations.
It has since been demonstrated [Nishihara and Poggio. 1982] that aspects of human sterco
perception previously believed to imply the need for terminations may be explained strictly on the
basis of zero-crossings. Thus. terminations arc not included in the implementation reported here.
It is assumed that the images have been brought into vertical registration, so that the cpipolar
lines are horizontal. Thus. zcro-crossings in the convolved images arc found by scanning along
horizontal lines, sccking pairs of adjacent clements of opposite sign. or triplets of adjacent clements.
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Figure 2. An example of a stereo pair taken in a laboratory setting.

the middle of which is zcro, the other two containing convolution values of opposite sign. The
positions of the zero-crossings are thus recorded to within an image clement. In addition to their
location, two other attributes of the zero-crossings were recorded: (1) contrast sign (whether the
comvolution valucs change from positive to negative, or negative to positive, as we move from left
to right along the scan linc) and (2) a rough estimate of the local orientation in the filtered image
of segments of the zero-crossing conteur. In the original implementation, the orientation of a point
on a zero-crossing contour was computed as the direction of the gradient of the convolution values
across that scgment, and was recorded in increments of 30 degrees.

Examples of the convolutions and zero-crossings for a series of operators are illustrated in
Figures 2, 3, and 4.

We note that while the positions of the zero-crossings are specified to within a pixel, it
may be possible to perform subpixel localization. Hildreth [1980] (sec also [Crick, et al.. 1980]
has demonstrated that in the case of an isolated zero-crossing, a simple lincar interpolation
between convolution values serves to localize the zero-crossing to subpixel precision [see also,
MacVicar-Whelan and Binford. 1981). It has been observed in computational experiments that
strong isolated zero-crossings, such as those corresponding to occluding boundaries or shadows,
for example, can be reliable matched to subpixel precision. In the presence of texture or other
confounding photometric effects, however, the accuracy of the subpixel localization decreases,
and is probably not effective. This raiscs an interesting question about human sterco acuity. It
suggests that for stimuli with isolated zero-crossings, (for example, line drawings). sterco acuity
could lie within the subpixel range (Howard, 1919; Woodburne, 1934; Berry, 1948; Tyler, 1977},
but for textured stimuli, (for example, random dot stercograms), stereo acuity might be expected
to decrease.

(3) Matching: Given a sct of zero-crossing represcntations at different scales for cach of the
images. the matching process proceeded in a coarse to fine iterative manner. The idea [first used by
Moravec, 1977, 1980] is to usc a sparse representation of the images, with a coarsc spatial sampling.
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Figure 3. Convolutions of the blocks images.

for the initial matching of points. The reduced density of points greatly reduces the search space
and makes matching casicr, at the expense of reduced resolution. This initial match can then be
uscd to constrain the matching of finer detailed representations. again reducing the scarch space
of the martching process, while allowing finer detail disparity information to be obtained. Thus,
the matching is guided by a flow of information from coarse representations to finer ones.

(3.1) Feature Point Matching: Consider first the zero-crossing representations obtained from
the coarsest filters (with central width w.). and supposc that we are given some estimate d, of the
disparity in a region of the image (which we may inmtially assume to be some arbitrary value). For
a 7zcro-crossing in onc image (say the left) at posivon (z, ). the scarch for a matching zcro-crossing
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Figure 4. Zero-crossings of the blocks images.

in the right image is constrained 10 the region

{(Z\)|z+di-w, <2z <z+d;+w}
(Note that the search takes place along the same horizontal scan line, thereby assuming that the
images have been registered so as to yicld horizontal cpipolar lines.) This +w, range in the right
image is divided into three pools, two larger convergent and divergent regions, and a smaller one
lying centrally between them. For cach pool, matching zero-crossings in the left and right filtered
images must have (1) the same contrast sign, and (2) roughly the same orientation.

A match is assigned on the basis of the responsces of the pools. If exactly one zcro-crossing
of the appropriate sign and orientation (within 30 degrees) is found within a pool, its focation

v - I g ' _J
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toniitied o the matcher, T two condidate zciorarossmgs are found witlin one pool fa ey
unhikehy event {see. tor evample, Grrmson, T98TH]). the unacher s notdied and no attempt s madv
o assign o match for the pemnt i question. 1 the matcher finds o simgle zaro-ciossimg i only one
of the tiree peols, that match s aceepted. and the disparity associated with the mateh s recorded
m a bufler. I o or three of e poals contan o candidate match, the algonthm records that

mformation tor future disambiguation,

Once all possible unambiguons matches have been wdenuficd. an attempt s made o
disambizuate double or tiple matches. s s dJone by scannimg o nerghborhood dhout the pomnt
i guostion and recording the wgn of the dispanite of the unambigoous matches within tha
neighborhood. (The svign of the dispanty refers o the signof the pool from which the mach
comes: divergent, comergent or zera) 1F the ambiguous paint has o potential maich of the same
stgn as the domunant tpe withim the neighborhood. then tat s chosen as the match, Otherwise,

the maich at that point s eft ambiguous,

(3.2) Continuity: It is possible that the region under consideration docs not lie within the = w,
disparity range examincd by the matcher, This 1s detected and handled by the following operation,

If the region dovs lic within the disparity range +u.. then excluding case of occluded points,
every zeromcrossing in the region will have at feast one candidate ma i the other filtered image.
On the other hand. if the region lies beyond the dispanty range . -, then the probability of a
ghven sero-crossing having at Jeast one candidate match will be ah 0.7 [Marr and Poggio.

1979; Grimson. 1981a. b}. Thus. by counting the percentage of . v ossings within a region
that have at least onc match. and thresholding based on the probabilities stated abuove, disparitics
will be accepted only in reglons lying within the current disparity range. This consiraint is based
on the continuity assumption [Marr and Poggio. 1979] that surfaces generally vary in a smooth

manner relative to the viewer.

(3.3) Control Strategy: Finally, once this matching has been performed for the coarsest filter,
the sparsc disparitics abtained can be used to reahgn the images, and the process can be repeated
at the next finer scale. Since the density of zero-crossings increascs as the size of the filter 1s
decreased, this coarse to fine control strategy allows the matching of very dense zero-crossing
descnptions with greatly reduced false target problems, by using coarser resolution matching o
drive the alignment process.

(3.4} Vertical Disparity: While the matching as described above only searches for corresponding
zero-crossing points along the same horizontal scan lines. the control strategy of the algorithm
can easily be modified to handle small amounts of vertical disparity. First. note that due to the
size of the T filiers. the coarser fevel zero-crossing representations are less sensitive to local
vertical dispanity than the finer level ones. Now suppose that the matching has been perfonned
for the coarsest filter and that the horizontal and vertical disparity in a region of the image is
roughly given by d and v respectively. When proceeding to a finer filter. the scarch for matching
zero-crossings 1s ininally centered about this disparity. If, however, the density of zero-crossing
ponts that can be matched at dus level 1s small, it is ikely that the horizontal disparity is nearly
correel, but that the vertucal abignment is in crror. Thus. reapplying the mutching process with

M e




the sanc feene ol oo conend s bt wadh sind vanations (on the order of several inesy e i

vertiead abianent - will lead oo conedt ahenment of e pnages, and hence oo preater

denstty o oo arossis s o assigined vahid disparity vaduoes.
2.3 Testing of the Origingl Implementation

A reported o JGranson, 19800 19810 this implementanon of the Marr-Pogoio aleontiim
has been tested on a vaney of images. Much of the origimad testing was pertormed o random
dop stereozrams, tor two teasons, Fust because the stercograms are ssnthetiealls created, it i

"

possihle quantitatnvely o compare the dispanties computed by the algonthom wath the phass
correct disparities. Second. hecaase random dot stercograms are o standard psychiod st v ahe o
for examinng attributes of the human stereo system. the performance of the aignmehan or

test cases could be compared o haman pereeption, providing a means of examinimy the adodue
of the underlying model. Faamples of the testing included two-planar stercograms ¢ vty
densities, more complex figures such as a wedding cake and a spiral staircase, storcograms an
which onc or both mages had been blurred. stercograms with added spatial frequency filtered
noise. stercograms in which one of the images had been decorrelated by ditferent amounts. and
stercograms in which one of the images had been compressed. It was found that on the stsndard
random dot stereograms, the matching algorithm performed very well. usually with an crror rate
of less than one part in a thousand. On notsy or decorrelated stercograms, the ¢rror rate was
normally on the order of one pereent. while the density of points to which a disparity was assigned
decreased (and in the ima vanished).

The implementation was also tested on a number of natural images.. using a varicty of
illumination gcometries and with objects of differing photometric characteristics. Examples included
a speckled coffee jar, a basketball game. an outdoor metallic sculpture, and a portion of the
Martian surface. For these natural images. a quantitative evaluation was more difficult to obtain,
precisely because the imaging geometry was not controlled, but it was observed that the qualitative

performance of the algorithm was still good.
2.4. Discussion

While the initial testing of the algorithm did serve to support the adequacy of the Marr-Poggio
algorithm as a mode! of aspects of the human stereo system, and while the overall performance of
the matching algorithm was very good. a number of weak points in the algorithm were illuminated
during this testing.

2.4.1. Continuity constraints

It was obscrved that most of the actual matching errors occurred along discontinuties in
depth. for example at occluding boundaries between two objects. This follows from the use of
matching statistics over a region as a means of distinguishing correct matches from random ones.
Theorcetically. this test is based on the observation that surfaces are gencrally smooth relative to
the observer. and hence disparity will generally also be smooth. While the theoretical observatior
1s sound. the implementation of it by mcans of a statistical measure over a region of the image

has some difficultics.
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Figure 5. The problem of the continuity consiraint near obpect boundanes,

This is most castly lustrated by the following example. Suppose the region over which the
matching statistics are measured is a square of wside d (while this s the casiest o implement. it
15 not critical and the following argument holds for other shapes as well). Further suppose that
the stercogram consists of two planar surfaces with a sharp break in dispanty between them. | et
the density of zero-crossings be p and presume that the region 1s positioned such that § percent
of the region covers surface A and that 1 ~ % pereent covers surface B (see Figuir §). Finally,
assume that the fixation of the cyes 1s currently posinoned on surface B, so that the portion of
the region covering the surface A is out of range of the matching process. 1 ¢ is the threshold
for accepting the matches in a region as being within the range of the matcher. (for the analysis
of Marr and Poggio [1979. p317] 0.7 < ¢ < 1.0). then the question to consider is for what values
of r the percentage of matched points in the region will exceed .

In theory, the number of matched points in the surfuce B region is expecied to be pd(d - z).
angd the number of matched points in the surface A region is expected to be 0.7pzd. Thus, the
percentage of matched points is given by

d -~ £ 0.7
pdld ~z)+0Tpzd _ |47
pd(d = z) + prd d

The values of z for which this percentage exceeds ¢ is given by

The most conservative threshold would be « = 1. in which case = = 0 and the only position
of the region for which the disparity values are accepted as correct is that in which the region is
entircly positioned over surface B. While this would work on perfect data. in practice it is likely
1o be overly conscrvative, causing a large reduction in the percentage of zero-crossings to which
a disparity is assigned, although the error rate should be virtually zero. Oac difficulty with real
data is that even for regions of the image whose disparitics arc completely within range of the
maicher. the zero-crossing points may not all have matches. For example. geometric distortion in
the sensors. perspective distortions in the imaging geometry. noise in the irradiance values and local

10
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photometie effects all can cause sbight varanons in the zero-crossings that mas resadt o sinaldl
number of unmdched poits. Rather than discard all the disparity information i regon hecause
Aol seroscrosame point does not have an assigned match, we would like to preserve such
mtomation. by using g owess consenvaling threshold. Consider. however. the compromise case of
o 08y I this caseo the oo s on the posttioning of the region are given by 0 < 5 <2 .54,
and i this cases any tmcosiedt) disparity values ving within 0.5d pisels of the ‘edge of surface B
will be acoepted as cotrect This s obsenved in examples of the testing of the algorithm. and while
the number of such errors s smalll o s unaordable within the conteat of tis tpe of statistical
check. Hhas problem will be very apparent in the case of thin clongated surfaces suspended above
& background. where the widths of the surfaces are less than the dameter of the statisties region,

for example. i an acnal sterco wnage of a highway interchange.

One means of overcoming this problem is 10 observe that while it is difficult o ensure
that a region of the image corresponds strictly to a single surface. edges (or sero-crossings) in o
filtered image will generally correspond 1o a single surface, since they usually reflect changes in the
surface topography or the surface photometry. Thus. rather than imposing a condition of disparity
continuity over an arca of the image, onc could instcad require a continuity of disparity along a
contour in the filtered image. This is essentially the figural continuity constramit of Mayhew and
Frisby [1981]. and has been suggested in a slightly different form in Arnold and Binford [1980).
Thus. we nced 1o derive a contour based analog to the regional continuity check used in the
original Marr-Poggio implementation.

Once the feature points have been matched. it can be observed that the collection of all
matched points is composed to two distinct sets. In regions of the image where the zero-crossing
representations lic within matching range of the current image alignment, the matched feature
points tend to form extended contours. Elsewhere, the matched feature points tend to lie in
scatiered small scgments. The goal of the figural continuity constraint is to distinguish between
these two situations.

We now derive an explicit form for the constraint. We know, by applying Rice’s theorem
[Grimson. 1981b, p. 78]. that the expected distance between zero-crossings of the DOG filter of
the same contrast sign is given by

Then given uncorrelated left and right zero-crossing descriptions, the probability of no match at
a particular disparity is
1

l'"—x
8

and if p denotes the horizontal width of a matching pool, and v denotes its vertical extent. the
probability of no match within a poo! of dimensions p X v is

Py
(-3
a

and hence the probability of a match in this pool is

11
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Now we consider the probabiiny of randomby matching scements of o contour. Given o contour
segment of length & none wnage. we want to determune the probability that we of those &
points has o match within the corresponding pool i the other image. when the two images are

uncorrelated. Clearly, this s given by

‘ R o
’k.vu L ' I3 “ ") (I’

1=
Thus, given some threshold, o on the eapected error rate. such that 0 < ¢ < 1. we can determine
constraints on the fength of a matched zero-crossing contour that will be accepied as corresponding
o a correet match. That s ginven a threshold & and a value for the number of unmatched gaps
in the contour, k- . we can find the minimum length & of a contour such that Pe,, < ¢. In
particular. we let
£, =min{k]| Pox_, < ¢}

denote the threshold on the length of matched contour required to sausfy the figural continuity
constraint, for some number of gaps. Note that this is a function of the expected error threshold
¢. as well as the horizontal pool size p. the vertical poul size v, and the mask size w.

Thus we have derived a specific form for the figural continuity constraint, namely that the
length of contour that must be mawched, as a function of the crror threshold, as well as the

parameters listed above is given by the values of ¢,.
2.4.2. Vertical disparity

One of the impliat assumptions of the Marr-Poggio slgonthm s that the geometry of the
two sensors yiclds hortzontal epripolar ines. While 1t s possible 1o recufy the images to remove
gross geometric distortions caused by factors such as cycletorsien and camera ult, there are likely
to be local distortions of the epipolar geometry  duc o geometric distoruons in the sensor, or
perspective effects. Furthermore, the discrete nature of the sero-crossing representaton may cause
small variations (on the order of a pixel) in the positions of the sero-crossings. These factors
suggest that although large scale cffects on the epipolar geometry can be handled by some type
of image rectification. there may soll be small scale vanations on the epipolar gecometny that must
be handled by the matching algorithm.

In light of this discussion. it is interesting to note recent evidence concerning the effect of
vertical disparitics on the human sterco system. It has been observed psvchophysically [PDuwaer
and van den Brink, 1981a. 1981b] that while up to a degree of vertical disparity can be tolerated
by the human sterco system. almost all of this 1s handied by inveking an cye movement 1o align
the images. In the absence of cye movements [Niclsen and Poggio, 1983). only about 2-4 minutes
of vertical disparity can be tolerated. Once interpretation of these results is that the sterco matching
mechanism is capable of perfonming the correspondence process only if the images have been
nearly rectified, and that grosser distortions of the epipolar gcometry are corrected for by changing
the alignment of the eyes.

12
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Interestinghy . the engmal iplementanon of the Maer-Poggia dgonthm essentiadly meotporated
thrs cffect m the tollowing manuer. nially. the vernical dispanty was assumed 1o be zeio (althoagh
i monocular cues were ncorporated into the sastem, it would be possible (o precompute «
less arbitrary vertical alignment of the omages [Mare and Poggio. 1980]). and the matching was
pettormed at the coarsest resolution, Because of the large size of the filter, the eftects of vertical
disparity in the mages s less fikely 1o aftect the performance of the matcher. Suppose we consider
some region of the umage. and use the dispanty information computed by the coarse filter
align the images. If the finer filtered hmages cannot be matehed (or can be only ey sparsely
matched). this can be wiken as an mdication that the images have been correcthy aligned o remaose
amy horzontal dispanty. but that a small amount of vertical disparity may be present. Thus, hy
apphing small ahgnment corrections in the vertical direction, the images can be brought into
alignment. thereby increasing the density of computed dispanity vatues. This behavior was observed

in computational experiments on a number of natural images.

Although the performance of the Marr-Poggio-Grimson implementation was qualitatively
consistent with the psichophysical data. the use of a stringent epipolar matching geometry was
probably too strict. In other words. while it is feasible to use gross alignments of the images to
accaunt for large scale geometric effects, a stnict epipolar maiching strategy may be oo sensitive
to small local distortions in the zero-crossing descriptions, cither due to geometric or perspective
effects. duc to noise in the carly processing. or due to discretization effects. As a consequence,
it is suggested that the matching of zero-crossings be relaxed slightly. (Note that in the original
Marr-Poggio algorithm, the use of oricnted filters suggests that vertical disparity cffects would be
more tolerable.) For cxample, suppose there 15 a scro-crossing at some point (z,y) in the left
image. The nitial Marr-Poggio implementauon would scarch for a corresponding zero-crossing in
the region

{(z'y)lr+d-w<z <z+d+ )
in the right image. Instcad, we propose to search for a corresponding sero-crossing in the region
{(y)fzsd-w<s <redru, y-c <y <y+¢)

where ¢ 1s on the order of 1 or 2 scan hines. Note that while this will make the matcher less
sensitive (o small distortions or noise, it will also reduce the accuracy of the maiching process,
since a single zero-crossing point in onc unage could potentially be matched to all the points on
a zero-crossing segment lyving within this window 1n the sccond image. viclding a small range of
disparity valucs, rather than a single one. The cffect will become more noticcable as the orientation

of the zero-crossing segment approaches horizontal.

We also note, while discussing vertical disparity, that several authors have recently proposed
using measurcd vertical disparitics to obtain the additional camera parameters needed to convent
disparity dircctly into distance [Mayhew. 1982; Longuet-Higgins, 1982 Mayhew and Longuet-
Higgins, 1982; Prazdny. 1982, 1983). Whilc the algorithm described here does not use the vertical
isparity information is this manncr, it is possible to augment the algorithm to do so.

13
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243 Control strategies and scarch spaces

Finding the correspondence between poits in the two images can be considered as a problem
of scarching a space of possible correspondences for the correct solution. In considering this ype
of formulation. two separale issucs must be considered.

1. Restricting the set of possible alternatives. The key point s o improve the reliabihty of
the computation, by attempting to ensure no fulse positives, and as fow false negatives
as possible, i.e. no imcorrect matches, and as few cases of no answer as possible.

2. Strategies for cefficient]y searching the space of alternatines w find the correct one.

We wish 1o separate these two issues, since while they are related. techngues used 1o reduce
the space of possible correspondences need not be inextricably tied 1o particular strategies for

scarching for those correspondences.

First. we consider means for reducing the space of alternatives that must be explored in
order to find the correct correspondence. Assumce that cach image is n X n. Then imtially cach
point in one image has n? possible maiches. As well, there are »® points in cach image. so a
straightforward, British Muscum style, scarch algorithm requires n* total comparisons. How can

we reduce this?

Feature point systems. while suffering a reduction in the density of computed depth salues,
can significantly reduce the space of possible correspondences, by attempting to restrict the
computation to "distinguishable” points in the images. If the density of feature points is p, then
the set of possible matches becomes pn? and the number of total comparisons under the British
Muscum algorithm is p%n*. Notc that in the case of the Marr-Poggio algorithm, p varies with the
size of the initial filter. In particular. the expected density of zero-crossings is

1

cw

where

by the analysis of [Grimson, 1981, p.78). Thus. the number of possible candidates for a
correspondence reduces to

cw
and the total number of comparisons involved in the search is

nt

2w?’

The next major constraint that can be applied to the matching process is the epipolar one.
If we take a liberal interpretation of this constraint. then a point on line y can be matched only
to points on lines o' such that y — v < v/ < y + v, for some constant v. In this case. cach point
has a space of possible matches on the order of

(2v+1)n
cw

and the total number of comparisons over the whole image is
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The final matchimyg constraint used i the Marr-Poggio algorithm is that of continuity. which
is miended o reduce the namber of possible matching candidates from order n 1o 1. Of course.
one can clearly construct sitaations in which the number of matching candidates is not reduced o
a unigue solution, but i general. as the discussion in the previous section indicated. the continuity

constraint can he structured so as to reduce the probabitity of false matches o virtually sero.

Note that all of the constraints introduced in this discussion have been matching constraints,
that is. they have reduced the number of possible matches for a given point. As a consequence.
the total size of the search space has also been reduced. but it is important to note that all the
discussior to this poing has been independent of the particular scarch strategy 10 be ecmploved in
finding corresponding matches. This distinetion between the use of matching constraints o aler
the space of possible correspondences. in order o ensure the existence of a unique solution, and
the use of cfficient 1echniques for scarching the space of solutions to find the correct solution,
is mmportant in ight of the final constraint of the Marr-Poggio algorithm, the use of multiple
resolution representations of the image.

Onc use of multiple resolution representations is in dealing with false targets. For example.
if a finc resolution feature point representation has more than one possible match for a particular
point, the correspondence information at a lower resolution representation can be used to resolve
this ambiguity. This was one of the main uses of multiple resolution representations in the original
Marr-Poggio algorithm, "This disambiguation technique was also intertwined with an efficient scarch
algorithm as well. however. In particular, the matching of finer level representations is directly
driven from coarser level correspondences (whenever possible). Not only does this provide one
means of avoiding false targets. but it is also an extremely efficient method for scarching the space
of possible matches. as is indicated in the following discussion.

Let wp denote the size of the smallest image filter, and assume that we have k + 1 such
filters, each onc doubling in size from the previous one. Then, by the discussion above, we know
that at the coarsest level, we must search on the order of

n?  (2v+1)n (20 +1)nd

2kwy 2% wy 222w}
alternatives in order to find correspondences for all the feature points in this level of representation.
If the matching process is driven in a coarse-to-fine manner, then at cach subsequent level, the

image representations arc aligned based on previous matching, and for cach feature point, we
need only search an arca of sizc ew to find the correct match. Thus, in principle, we need only
compare

(2v + New
cw
points. This implics that at cach of the subsequent levels, we must search 2v + 1 comparisons for

= (20 + 1)

each of

2'cwy

15




Corunsen Stereor Vb

feature points. Fhus, the totad number of comparnsons necded s on the order of

k-1

(204 1)t n¥ (2 + 1)
a2 wew,
points, or cquivalently,
(2v + nt i" ] n
Cewn P17 gl

points. This is still O(n?) but as & increases. we see that the amount of search imolved in finding
feature pomnt correspondences reduces to the order of the dimensions of the image. i.c. »*. Thus.
one of the advantages of multiple Tevel representations. besides its use in disambiguation of false
targets, is its cfficiency in finding the correspondences especially in situations. such as the human
visual system, in which high resolution information s only required over small portions of the
image at any onc time. (Compare this estimate of O(n?) pointwise comparisons with the results
of [Ohta and Kanade 83] of O(n®) primitive computations for a gencral 3-1) scarch algorithm and
O(n®) primitive computations under certain limiting assumptions.)

It is curious to note as an aside that one could use the above expression to predict the
number of levels of representation (or equivalently, the number of V2¢ filters) needed to reduce
the scarch space to O(n?). If we consider an arca spanning &° on a side with fovecal-level receptor
spacing. then a straightforward calculation predicts that 6 filters are necessary to reduce the search
space to O(n?). Interestingly, recent investigations by Wilson [1983] provide evidence for 6 such

filters.

If the key consideration is not speed. but rather. high resolution depth information at all
points in the image, it is possible to propose an alternative scarch strategy. while still taking
advantage of the disambiguation properties of multiple resolutions representations. Rather than
driving the matching process directly from the coarse level information, we can instead use that
information only when needed for disambiguation.

As in the original Marr-Poggio algorithm, for any given alignment of the images (fixation of
the eyes). the scarch space is restricted 10 a range on the order of cw, so as to avoid the possibility
of falsc targets. Any candidates that satisfy all the matching constraints are accepted as possible
correspondences, and stored away. If the total range of disparity over the entire image is within
this cw range, then we are done. If not. however, then the same matching process is repeated at
some desired spacing in depth, and the algorithm is swept across the entire range of disparity.
While for each given alignment of the images. only onc match is possible, it may be the case that
matches for the same feature points will be found at very different alignment positions. If this
is the case. then this falsc targets problem can be disambiguated by choosing the alternative that
best agrees with the correspondence information obtained at coarser levels. Clearly, such a scarch
algorithm requires a sweeping of fixation across the entire range of depths. and while it will result
in high resolution depth information everywhere in the image. it does so at the expense of speed.
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3. A Modified Marr-Poggio Stereo Matcher

We have meorporated all of these considerations into s new algorithm, which we describe
below. While the modificattions were made in part because of recent psychophysical evidence
concerming the hunran sterco system, we will discuss its possthle merits as a stereo sistem for such

apphications as automatic actial cartography and robotics in the next section.
31 The Modified Algorithm

We wilt first vuthne the basic algorithm. and then provide more detailed desriptions of
cach of the steps. The basic steps of the matching algorithm can be summuarized in the following
manner. Note that steps 0-3 are idenucal o the onginal algonthm. The mam concentration on
maodifying the algonthm has been at the matching stage. Also note that steps 4.1-4.3 arc an instance

of Marr's principle of least commminment [Marr, 1982].

3.1.1. Qutline of the Algorithm

(0) Loop over levels; We initially choose the coarsest level of representation, i.c. the one
corresponding to the largest image filter, and iterate by choosing successively fincr levels of
representation.

(1)} Comvolution: Given a level of representation, the left and right images are convoived
with the V¢ filiers of the corresponding size.

(2) Zero-crossings: Given the convolved images. the nontrivial zero-crossings are located and
marked with their contrast signs. These zero-crossings descriptions form the basic representations
from which correspondences will be sought.

(3) Loop over fination position: The relative alignments of the two images are choosen. The
simplest methad 1s to nitially choose an alignment corresponding to some lower limit on the
disparity of the images. and slowly increment this offset until some upper limit on the disparity
is reached. This increment could be a pixel at a time, or in terms of some larger fraction of the
width of the matching area for a given fixation position.

(4) Matching:

(4.1) Feature point marching: Given a pair of zero-crossing representations, from the current
level. and given a fixation position defining the relative alignments of the two images. feature
point matching is applied. For each feature point in one zero-crossing description, this involves
scarching an arca of the other zero-crossing description for a zero-crossing of the same contrast
sign. This arca has a vertical cxtent about the same horizontal line in the other image that is
limited to a small number of scan lincs, and a horizontal extent, of width defined by the size
of the underlying image filter. about the same position in the other image, offsct by the current
relative alignment.

(4.2) Figural continuity: Once all the feature points have been matched for the current level
of representation and the current fixation alignment, figural continuity constraints are applied
o prunc the incorrect matches. This involves tracing the zero-crossing contours, scarching for
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contiguous matched segments of those contours whose length exceeds o threshold whose value can

be determined o prior from the properties of the underlying V26 filters.

(3.3) Dospuriy map update: Any maiched feature point contours which pass the figural
continuity test are then added to disparity map. recording the relevant disparity for cach feature

point in the decepted contour segments,

(5) Loop: Once this computation of disparities within the defined runge about the current

image alignment has been completed, the fixation position is updated by looping to siep (3).

(6) Disambiguation: When all the fixation positions have been processed. we are left with a
disparity map representation that contains all matched sero~crossing segments. with their associated
disparities. We now check this map for possible doubie matches. Any such ambiguitics are resolved
by checking the disparitics within the same region of the representation at the previous level (if
there is one) and accepting only those disparity values at the current level that are consistent

with those ralues (i.c. lic within a predefined range of the coarser level disparitics). If this
disambiguation does not succeed. cither because there is no coarser level. because there arc no
disparity valucs within the same image region at the coarser level, because nonc of the current
level disparities lic within range of the coarser level oncs. or because more than one of the current
level disparitics are consistent with coarser level disparitics, then all the alternauses are discarded.

(7) Loop: Once the final disparity map for the current level has been completed. the process
proceeds to the next finer Jevel of representation, by looping to step (0).

(8) Consistency: When all the levels of disparity information have been computed, one
; final test is possible. Each disparity value at the finest level of representation can be tested for
t consistency by checking that, within the same region of the previous dispanty representation, there
[ is at Icast one disparity value that is consistent with the current value.

3.1.2. Detailed description of the algorithm
We now turn to a more detailed description of the different stages of the algorithm.

(1) Comolutions: As in the previous implementation, convolve the images L, R with V?G(w)
filters, for different values of w. For notational convenience, we let

LCy(z,y) = ViG(w) s L
RC . (z,y) = v’c(w) R

denote the left and right convolutions, that is, for different widths w, the convolved image forms
a two-dimensional array indexed by r and y. Gencrally, we usc only 3 or 4 valucs of w, for
example, w = 5,9,17, 33 pixels.

(2) Zero-Crossings: As in the previous implementation, compute the zero-crossings of the
convolved images. We let
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LU (x,4)  positne zeroscrossings ol L (1, y)
LN (o y)  negative zeroscrossngs of LC (1, y)
LI, (r,y)  horizontal sero-crossings of LO (7. y)
LZ (r.y) ol zerocrossings of LC,(r,y)
RP (. y)  posine seroscrossing of RO, (x,y)
BN y) - negative sera-crossings of RO, (r,y)
1t ,(2,y) - horizontal zero-crossings of BC (1, y)
kRZ.(r y) = all zero-crossings of KBC.{r,y).

Fach of these is a bit map.

(3) Fixation position: Initially choose the alignment of the two images to correspond to some
presct lower limit, and increment by a specified anount until the alignment eaceeds some presel
upper limit.

(4) Matching: The matching algorithm can be subdivided into three scctions. First. the
feature points are matched: then, figural continuity is applicd to the resulting matches: and finally.

any ambiguitics between matches are resolved.

(4.1) Feature point matching. The feature point matching portion of the algorithm can be
summmarized as follows. Suppose we are dealing with zero-crossing descriptions corresponding to
some particular filter of size wy. Given a disparity dy, we construct an N X N x 2wy local disparity
array M:

y+e
Mz y. ) :{1,/’%(:, y)A[ V Blulz+do+r, u)}}

vy —¢€

V {I,Nwo(:, y) A V RNy, (z + do + r,v)]}

v=y—t
where 0 <z < N.0<y < N, and —w < r < w. Thus, each slice of M(z,y,ro) given by a
value rp of r is a sct of matched feature points, within a vertical range of +¢, for a local disparity
value r about the current convergence value dy. Note that positive zero-crossings are maiched to

positive ones, and negatives to negatives, over a vertical range of +e, and over a horizontal range

of +w about the current alignment.

(4.2) Figural continuity.

In order to distinguish correct from random feature point matches, we apply a figural
continuity constraint, by restricting the accepted matches to those extended contour segments
whose length is sufficiently large. First, we nced a means of defining a path along a zero-crossing
contour. If LZ,,(z,y) = 1, that is if there is a zero-crossing at this point. then we define
JLwe = (u,v) 10 be the next point along the zero-crossing contour. In other words, if the vector
r = (z,y) is an index into the zero-crossing array, and if LZu,(Zo,¥0) = LZuy(%0) = 1 then the
ordered sequence

To, fL.wo(rO)v fL.wo(!L.Wg(rO))y ra
traces out a zCro-crossing contour.

Then. given a threshold ¢ on the expected error rate (0 < « < 1), we need a threshold on
the Iength of the matched contour segments. By the previous discussion, this is given by

19




Grimson Steren Vision

f min {k i Dy ; < o}
where Pex , is given by cequation (1) Thus, we let £y, ¢, F: denote the contour Tengihs regunred
by contours of 0, 1 and 2 gaps respectinely. Then the procedure for figural contmuity can he

specified as follows.

Figural Comtinuity Procedure
Compress all the matches into one representation:

w

MT(r,y) = V M(r y, 1) Vz,y.
Iniualize the output array:
SM(z,3)=10 Vz,y.

For cach point 15 = (7¢, yo) such that M T{ry) = 1, apply the following procedure. Set:
g=20 . 8ap counter
=1 . length counter
§ = {1p} . contour tested
p=1p . contour pointer.

(0) If f1.u,(P) = 10
then we have completed tracing the contour, and it is not long cnough, so exit without
saving the contour;

else,
if LHuo(fLwo(P)) = 1
then the next point is a horizontal zero-crossing, so go to (1);
else,
if MT(f1,u(P) =0
then there is a gap so increment the gap counter: g = g + 1
and go to (1);
else increment the length counter: £ = £ + 1
and continue.
MWifg>2
then the gap is too large, so exit without storing the contour;
else,
fg=2
then,
ife> ¢,
then save the contour: Vp e §,set SM(p) = SM(p)V MT(p)
else go to (2).
clse,
ifg=1,
then,
ife>y¢
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thensavethecontour: vp o $,set SA(p)  SA{(p)V A1T(p)
che go o 2)
clse,
ify O
then,

if£> ¢,
then sane the contour: wp € Soset SAI(p) - SM(p)V MT(p)
clse go o (2). '

(2} Increment the contour collection, setting § = § U {f1.wa(p)}

and increment the contour pointer, setling p = f1,.u.,(p)-

Go to (0).

(4.3) Disparity updating.
When this procedure is finished. S M (p) contains all the matches for this alignment that pass

the figural continuity constraint. Now, we need to update the global disparity array Dy,(z,y,d).
This is accomplished by looping over all values of p and applying the following procedure.

Disparity Update Procedure
I

then set

Yo —wSM(p,0)do + 0) _
D‘”“(’ v SM(p,o) )_1

o=-—w

That is, we mark a 1 at the point in the three-dimensional disparity array corresponding to
the average disparity of the local mawches. Thus for each d, the set
{Dw,(p,d) | ¥p}
is a disparity slice of the matched images.

To create the total disparity array D, we can simply let dy range between preset limits de to
dx. and itcrate over the previous steps. Note that this is an extremcly simple control strategy, which
could clearly be augmented. for cxample along the lines suggested in the original Marr-Poggio
theory. In cases where a detailed, fine resolution, disparity map is desired. this simple control
mechanism should suffice. In situations in which speed is a critical factor, an attention focussing
mcechanism that uses coarse disparity information to guide finer resolution matching is probably
essential.

The above algorithm has been specified for a single operator size we and can be applied at

cach of the four sizes specified carlier. The original Marr-Poggio theory proposced that a coarse to
finc matching strategy be used to guide the matching at finer resolution representations, in part
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becaise the ambiguits of such matches worcases with the moreasig density of e zetocrossings,
Wihitde we have split off the conttol stiategy aspects of s proposal by sweeping the images
through the entire range of possible dispanities tor cach operator. the use of muluple resolution

OPETAton s o means of dissmbiguation sull remaans o possibihity.
(51 Loop: Simphy loop to step (3) o marement over alf possible image alignments.

(0) Disambiguation. In particular. while oniy a single match will be assigned a scro-crossing
pomnt. for cach alignment of the mages. dy. 1t s possible that more than one contour will be
matched 1o e point s the disparity sweeps through the range dp < do < di, We can use the
disparity information obtained at coarser channels to help disaimbiguate this case. For cach channel

s17¢ wy, we perform the following operations.

First. we project the disp.-ity array, sctting, vp:

d if Dy (Pea) = bag
D, (p} = {null. if D, (p,a) = 0,Va
2. if utherwise.

Thus, if there is exactly one match, PD,, (p) equals the disparity value of that match; if there
is no match, it is sct to null: and if there is more than one match. 7D, (p) is marked with the
special character *?". If wp is currently set to the largest possible filier size, then nothing can be
done. If it is set to a smaller filter size, however. then let we denote the next Jargest filter size and

proceed in the foliowing manner.

Disambiguation Proccdure
For cach point p such that PD,,(p) =", let
A = {a | Dy,(p,a) =1}
denote the set of possible matches for this point.
H there is a point p’ ip a neighbourhood A, (p) about this point, such that
PD,,(p)#null

and

PDy,(p)7#?
and such that

IPDudp) - ail < 5

for some ¢q; € A,
then a, is a legitimate disparity value,
If there is exactly one legitimate clement g, of A,
then sct
PDy(p) = a;

else set

PDy,(p) = null.
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In this munmers we create the dispaniy map 20 for the current filier size wy.

(7 Foop: We can aterate this pracedure over decreasing values of wy. When this is fimshed.
we hive aseries of dispanty maps 70,0 of increasing tosolution as w decredses.

(51 Cansisteney. The disambizuation provess desenibed above can be considered as & tvpe
of consistency check. That s 1t there are two contoars that, to withim the i of the fipural
CONUNUILY CONNMEANL Mateh o gnen contour. we can use coaner level information o climinate
the incorrect match. This relies on the assumption that the correct contour will be accepted by
figural continuity, There may alse be crrcumstances i which the correct contour is nat aceepted.
tor example because 1t is occladed 1 one of the images, but i which an meorreet contour passes
the figural continuity constraint, and is accepted as a correct match. While this occurs very rarels
(cmpincal observations suggest that less than 0.005 of the matched sero-crossing contours have this

problem), it iy possible to apply a consistency check to the computed disparity maps (o remove

this possibility.

Consistency Procedure
Gnen two adjacent filter sizes w, < uy, VP,
if D, (p)# null
then,
if Ay, (p) i1s cmpty. leave D, (p) as it stands.

else,
if there is a point p' € Ay, (p) such that .[I'D, (p) - PD.,(p)l < ¥

then leave PD,,, (p) as it stands.
else, set ’Dy, (p) = null as it is not consistent with the coarser
resolution disparity map.

4. Examples

We will examine two different types of sierco imagery in this section, a laboratory scene
with many of the characteristics of industrial robotics situations. and acrial photographs of natural
and artificial terrain. The intent is both to provide a means of examining the performance of
the sterco algorithm outlined in the previous section, and to consider the potential apphcability
of such algorithms to automated sterco acquisition of depth information, both in robotics and
cartography.

4.1. Lahoratory Scenes

We consider first an example of a laboratory scene, shown in Figure 2. The scenc is composed
of a sct of wooden blocks, of different shapes and hving at different distances from the cameras.
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Figure 6. The set of matched zero-crossings for the blocks image.

The images were ken with an Hitachi CCD camera, and are 288 by 224 pixels cach. The images
contain grey-levels from 0 to 258, although the contrast range 1s more on the order of 10 to 110
The cameras were positioned roughhy 1500 mm from the foremost point in the image. namely
the front of the cylinder. with a separation of roughly 290 mm. By roughly. we mean that the

distances were mcasured to an accuracy of a few millimeters.

The left and right images were convolved with four different sized V2¢ filiers. with central
widths given by » = 17,13,9 and 5 pixcls cach. Thesc convolutions are illustrated in Figure 3.

The zero-crossings obtained from each of these convolutions are shown in Figure 4. Note
by comparison to the comvolutions that most of the zero-crossings in the support plance have
very shallow gradicents, corresponding to low contrast changes in the images. The positions of
such zero-crossings tend to be sensitive to noise, an issuc to which we will return shortly. As
has been demonstrated in earlier implementations of the Marr-Poggio modcl. the density of the
zero-crossings is directly proportional to the size of the V2 filter. Note also that the zero-crossings
of the largest operator tend to capture coarse features of the objects, such as their occluding
boundaries, while the zero-crossings of the smaller operators tend to capture in addition finer

details, such as the wood grain on the objects.

‘The set of zero-crossings from the finest level operator to which a matching zero-crossing is
assigned by the algorithm is displayed in Figure 6. Note that the figural continuity constraint has
removed virtually all of the matches corresponding to the shallow zero-crossings of the background
plane. As we noted carlier, these shallow zero-crossings tend to be sensitive to noise in the system.
and as a consequence there can be a noticcable vanation in the position of such zero-crossings.
duc to this noise component. Onc of the advantages of the algorithm presented here is that
the variation in zero-crossing position duce to noisc will gencrally violate the figural continuity
constraint, and hence such matches, with inherently noise disparity information attached to them,
will be pruned from the final disparity data. We should note. however, that there may be other
cdge detection technigues that are more effective at removing such noise-sensitive features prior
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Figure 7. Contour map of the blocks image.

to the matching stage [for example, Canny. 1983).

The vertical disparity in this set of images covers a range of 23 lincs. To obtain the results
displayed here. the algorithim was run at three different vertical alignments, and the results of each
pass of the algorithm were merged into a single disparity array.

Finally. in order to display the results of the stereo algorithm, we apply the following process.
We first interpolate the disparity information provided by the finest level channel, using a model
of visual surface reconstruction based on the image irradiance cquation {Grimson, 1982, 1983a,
1983b). To do this. we usc a portion of an efficient multi-grid implcmcmaﬁ(m of an alternative
but similar surface interpolation model. developed by Terzopoulos [1983. 1984]. Given the output
of this process. which is a densc reconstruction of the disparity over the image, we plot isometric
disparity contours, as shown in Figure 7.

The isometric disparity contours clearly demonstrate the local variations in depth of the
objects, as computed by the stereo algorithm. It can be scen that the isometric disparity contours
are not perfectly parallel, as might be cxpected from the shape of the blocks. This indicates that
while overall the computed shape of the objects is correct. there may be a certain amount of local
variation in the dispanty values, Icading to a distortion of the isometric contours, This is further
illustrated in Figure 8, which shows a perspective view of the reconstructed surfaces of the blocks.

To further evalute the performance of the algorithm, especially the extent of this local
variation, we performed the following additional tests. First, the disparity information was converted
to actual distance valucs, based on the scparation of the cameras, the angles of convergence of the
cameras and the size of cach individual pixel. ‘Thesc parameters were measured for the geometry
used 10 record the original sterco images. and thus, the distances from the camera to points in
the image were computed. The following table records the computed and measured distances, in
millimeters. for a sclected sct of points in the image.
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Figure 8. Perspective view of the reconstructed blocks surfaces.

Shoten Vo

_lable | - Computation of Distance _

Difference

Points {  Computed | Mcasured

| Cylinder front 1506 | 1517 1

 Wedge front 1647 1665 | 18
Block front | 1743 | 1758 | 15

| Cylinder 1o block | 237 u) | 4

; Cylinder to wedge B 141 148 | 7

| Cylinder radius - left 16 1 1
Cylinder radius - right 18 17 1
Wedge ~ depth extent 33 l 35 1 2 j
Block - depth extent a7 | 0 | 3

The first three entries record absolute depth measurements, and it can be seen that the
computed distances to the fronts of the threc objects are off by approximately 15 mm, out of a
sensing distance of 1500 mm. or roughly 195, Note that this transformation to absolute distance is
scnsitive not only to errors in the computation of stereo correspondence, but also to errors in the
measurement of the camera geometry. Given the coarseness with which the camera parameters
were computed. it is likely that this is the major source of crror in the computation of absolute

distance.

The remaining cntries of the table record relative computed distances, both for separations
of the objects. and for the depth extent of the objects. The fourth and fifth entries record the
computed and measured relative separations of the objects. The final four entries record the radius
of the cylinder, as mcasured to the left and right of the front of the cylinder, and the change
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i depth across the block and wedee, for this particular viewing angle. On average. the ciroran
relative depth tends w0 be on the order of 5-7 mm. out of 4 11l depth range of W0 mm. Lo
put this in the conteat of the stereo algorithm, we note that for this camera geometry, an crror
in stereo matching of one pixel would give rise o a depth crror of 5-10 mm, depending on the
actual location i the image. Thus, the errors in relative depth are essentially on the order of a
pixel in disparity.

4.2, Acrial Photographs

The second type of images to which we have applicd the sterco algorithm are acria
photographs. both of natural terram and man-made structures. The performance of the modified

stereo algorithm on all the images is summarized in the following table,

Fable 11 = Sterco Summarny
Blocks | UBC i FLSi ¢+ Phoenn 1 Bocing

Size IRX X 221 | 320 X 320 1 512 x 512 1 512 x H12 ¢ 320 x 320
Disparity Range | 56 | 13 | s | a1 3 |
| Zero-crossings 11013 16801 32007 _ 10642 ]

Maiched 7Z-C's 1780 12310 16073 6608

Matching Errors 0 9 | 286 167

Afier Consistency 0 0 { 0 ! 33

The row labelled size indicates the dimensions of the images. The row labelled disparity range lists
the disparity range of each image pair, in pixcls. In the row labelled zero-crossings. we indicaie
the total number of zero-crossing pixels, including horizontal ones. In the row labelled matched
z-¢'s. the number of such zero-crossings that are assigned a match is indicated. In the row labelled
matching errors, the number of zero-crossings pixels that are assigned an incorrect match are listed.
Note that we distinguish here between matching errors and localization errors. Maiching errors are
those that arise when incorrect zero-crossings contours are matched. independent of the accuracy
of the contours themselves. Such errors tend to be relatively large in disparity. Localization errors
are thosc that arise duc to error in position of the zero-crossing contour itsclf. Such errors usually
tend to be relatively small. The row labelled afier consistency lists the number of such matching
errors that remain after the consistency constraint is applied between different resolution disparity
maps.,

The images themselves are illustrated in Figures 9-20. For each one, we show the sterco images,
the disparity map obtained by matching the zero-crossings are the finest level of representation,
and a contour map bascd on this disparity map. The disparity maps arc displayed using intensity
to encode height, so that the brighter disparity points are closer. To obtain a contour map
representation of the results, we have applied a surface reconstruction algorithm [Grimson 1982,
1983a, Terzopoulos, 1983, 1984} to the stereo data.

The first pair of images, from the Phoenix area. arc illustrated in Figure 9, and were supplied
courtesy of the Defense Mapping Agency. A sccond stereo pair of natural terrain, from the
Fort Sill, Oklahoma arca, arc illustrated in Figurc 12, and were supplied courtesy of the U.S.
Army Engincering Topographic Laboratory. The next siereo pair, from the University of British
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Figure 10. Disparity map (Fr Sill).
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Figure 11. Contour map (Ft. Sill) bused on matching before consistency check.
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Figure 12. Natural terrain sterco pair (Pheonix).

Columbia. and supplied courtesy of UBC. are illustrated in Figure 16. The final stereo pair are of
a highway interchange. and were supplicd courtesy of Bocing Corporation,

A number of comments are in order concerning the performance of the algorithm, as indicated
above. We note that in the case of the blocks scene. the pereentage of matched zero-crossing to total
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Figure 14. Contour map (Pheonix) based on matching before consistency check.

zero-crossing is small, on the order of .17 percent. Note, however, that many of the zero-crossings
are shallow, unstable zero-crossing. corresponding to small fluctuations in the photometric process,
as illustrated by Figure 3. If we consider only zero-crossing points on the blocks themselves, then
the number of eligible zero-crossing points reduces to 2703, of which 1780 arc assigned a maich.
Notc further that this number of 1780 does not include any strictly horizontl zcro-crossing puints,
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Figure 15. Contour map (Pheonix) based on matching after consisiency check

Figure 16, Natural terrain stereo pair (UBC).

nor duocs 1t inctude very small zero-crossing contours, which fall below the matching thresholds,
and arc hence unmatchable.

The Fort Sill image docs provide some difficulty for the algorithm, particularly because the
photometric properties of the images cause a certain amount of fluctuation in the positions of the
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Figure 18. Contour map (UBC) based on matching before consisiency check.

zero-crossing contours. As a conscquence of the design of the matching procedure, which favors
no match to possible incorrect maiches, a large number of the potential zero-crossing points are
not matched. Note, however, that the percentage of matched zero-crossings to total zero-crossings
is somewhat misleading. since a large number of the total are not, in fact, matchable. In this
casc, at least ten pereent of the zero-crossings in the left image are not present in the right since
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Figure 19. Natural terrain stereo pair (Boeing).

Figure 20. Disparity map (Boeing).
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they Die bevond the edee of the image. We also note that the contour muap deplocd m bigore
11 s based on the tesults of the matching algorthm before the consistenay check s apphied - As
d4 consequenee, e effect of the single incorrecth matched contour in the upper feft guadrant
is clearly visible as a sudden dip in the contour map. This clearly demonstrates the need for o

consistensy check o remove obvious matching errors that survive the matchimg process itself

In the Phoenix images. the contour map of Figure 14 is also generated from matching dats
without a consintency check. In figure 150 we apply the surface reconstrucion algonthm o the
data after applving the comsntency check,. We also have relaxed the ughiness with which the
reconstruction is forced o pass through the stereo data, 1t can be seen that the resulung contour
map has removed the obvious matching defects and has a smoother set of contours, This smoother
surface reconstruction is one means of removing possible Jocahization errors in the matched data,

as well as matching errors that survive the process.

While the Fort Sill image presents a great deal of difficulty to the aizorithm due to large
fluctuations in the positons and shapes of the zero-crossing contours, the Boeing image presents a
different tvpe of difficulty. Here. the large number of extended. parallel image contours presents
a large set of potential ambiguitics. In general. however, the algorithm is able to solve this
problem, by relyme on information from coarser channnels to disambiguate finer ones. Because
the interpolation process is only applicable across smooth surfaces, and the Boeing 1mage contains
a large number of surface discontinuitics. we have omitted the contour map for this image.

It is important to stress with all of the contour maps. asd cspecially for the UBC images,
that these illustrations are intended as a graphical mcans of displaying the performance of the
sterco algorithm but not as a precise reconstruction of the underlying terrain. In particular, since
onc of the parameters of the surface reconstruction algorithm is the degree of smoothing applied
to the reconstructed surface, the resulting contour maps may exhibit more smoothing than is
warranted, due to the choice of this parameter. Nonctheless the qualitative performance of the
sterco algorithm 1s still evident by the arrangement and spacing of the contours. In the case of the
sterco pairs with buildings and other artifacts present, the application of the surface reconstruction
algorithm directly to the results of the sterco algorithm is actually incorrect, since it attempts to fit
a single surfuce over what are in fact scveral distinct surfaces. To be completely correct, the stereo
depth data should be scgmented into coherent regions, and then interpolated. Since this was not
donc, the resulting surface interpolation tends incorrectly to smooth over the discontinuities in
depth. Nonctheless, the contour maps illustrated still demonstrate the basic performance of the
sterco algorithm and the tightly clustered isometric contours help to indicate the scparations of
the different buildings from the ground.

5. Discussion

The modified Marr-Poggio-Grimson algorithm presented here was originally implemented in
LISP on an MIT Lisp Machine, and then recoded in Lisp Machine microcode. for more efficient
performance. The convolutions of the images were performed using a special purpose convolution
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device INshihara and Farson. 1981) While the time requared 1o process an image s dependent
on L large number of factors imvolving the compleaity of the image, it is possible to gine estimaltes
on the pertormance of tis implementation ot the algorithm. Using o 320 % 320 image as o buasis,
we have observed the following timing charactenisties. Fach comvolution of an image. including
tme required tointerface the convolutton device with the Lisp Muchine, usually required on the
order of & seconds. Fach computation of a zero-crossings representation typically required on the
order of 10 seconds. The amount of tme required to match the 7Cro-Crossing representations was
highlv dependent on the number of fixation positions required (and thus on the ol disparity
range of the image). Matching at cach such fixation position usually required on the order of
5 20 sceonds. depending on the structure of the zero-crossings contotirs. Finally. combining all
the shices of the disparity map into a single consistent representation typically required on the
order of 30 60 seconds. Thus. for example. a singie fine resofution channel priwessing of the
U BC images normally took under 5 minutes in total. and the total time for running three ditferent

resolution channels was on the order of 10 minutes.
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